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In this paper, using the concept of natural density, we introduce the notion of 
Bernstein operator of rough statistical convergence of triple sequence. We 
define the set of Bernstein operator of rough statistical limit points of a triple 
sequence spaces and obtain Bernstein operator of statistical convergence 
criteria associated with this set. Later, we prove that this set is closed and 
convex and also examine the relations between the set of Bernstein operator 
of rough statistical cluster points and the set of Bernstein operator of rough 
statistical limit points of a triple sequences. 
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1. Introduction 

*The idea of statistical convergence was 
introduced by Steinhaus (1951) and also 
independently by Fast (1951) for real or complex 
sequences. Statistical convergence is a generalization 
of the usual notion of convergence, which parallels 
the theory of ordinary convergence. 

Let 𝐾 be a subset of the set of positive integers 
ℕ × ℕ × ℕ, and let us denote the set {(𝑚, 𝑛, 𝑘) ∈
𝐾: 𝑚 ≤ 𝑢, 𝑛 ≤ 𝑣, 𝑘 ≤ 𝑤} by 𝐾𝑢𝑣𝑤 . Then the natural 

density of 𝐾 is given by 𝛿(𝐾) = 𝑙𝑖𝑚𝑢𝑣𝑤→∞
|𝐾𝑢𝑣𝑤|

𝑢𝑣𝑤
, 

where |𝐾𝑢𝑣𝑤| denotes the number of elements in 
𝐾𝑢𝑣𝑤 . Clearly, a finite subset has natural density zero, 
and we have 𝛿(𝐾𝑐) = 1 − 𝛿(𝐾) where 𝐾𝑐 = ℕ\𝐾 is 
the complement of 𝐾. If 𝐾1 ⊆ 𝐾2, then 𝛿(𝐾1) ≤ 𝛿(𝐾2). 

The Bernstein operator of order (𝑟, 𝑠, 𝑡) is given 
by: 

 
𝐵𝑟𝑠𝑡(𝑓, 𝑥) =

∑𝑟
𝑚=0 ∑𝑠

𝑛=0 ∑𝑡
𝑘=0 𝑓 (

𝑚𝑛𝑘

𝑟𝑠𝑡
) (𝑚

𝑟
) (𝑛

𝑠
) (𝑘

𝑡

) 𝑥𝑚+𝑛+𝑘(1 −

𝑥)(𝑚−𝑟)+(𝑛−𝑠)+(𝑘−𝑡)  
 
where, 𝑓 is a continuous (real or complex valued) 
function defined on [0,1]. 

Let 𝑓 be a continuous function defined on the 
closed interval [0,1]. A triple sequence of Bernstein 

polynomials (𝐵𝑟𝑠𝑡(𝑓, 𝑥)) is said to be statistically 

convergent to 𝑓(𝑥), provided that the set: 
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𝐾𝜀: = {(𝑚, 𝑛, 𝑘) ∈ ℕ3: |𝐵𝑚𝑛𝑘(𝑓, 𝑥) − 𝑓(𝑥)| ≥ 𝜀} 

 
has natural density zero for any 𝜀 > 0. In this case, 
𝑓(𝑥) is called the statistical limit of the triple 
sequence of Bernstein polynomials. i.e., 𝛿(𝐾𝜀) = 0. 
That is, 
 

𝑙𝑖𝑚𝑟𝑠𝑡→∞
1

𝑟𝑠𝑡
|{(𝑚, 𝑛, 𝑘) ≤ (𝑟, 𝑠, 𝑡): |𝐵𝑚𝑛𝑘(𝑓, 𝑥) − 𝑓(𝑥)| ≥

𝜀}| = 0.  

 
In this case, we write 𝛿 − 𝑙𝑖𝑚𝐵𝑚𝑛𝑘(𝑓, 𝑥) = 𝑓(𝑥) 

or 𝐵𝑚𝑛𝑘(𝑓, 𝑥) →𝑆𝐵 𝑓(𝑥). 
If a triple sequence is statistically convergent, 

then for every 𝜀 > 0, infinitely many terms of the 
sequence may remain outside the 𝜀 − 
neighbourhood of the statistical limit, provided that 
the natural density of the set consisting of the indices 
of these terms is zero. This is an important property 
that distinguishes statistical convergence from 
ordinary convergence. Because the natural density of 
a finite set is zero, we can say that every ordinary 
convergent sequence is statistically convergent. 

If a triple sequence satisfies some property P for 
all m, n, k except a set of natural density zero, then 
we say that the triple sequence satisfies P for almost 
all (m, n, k) and we abbreviate this by a.a. (m, n, k). 

Let (xminjkℓ
) be a subsequence of x = (xmnk). If 

the natural density of the set K = {(mi, nj, kℓ) ∈

ℕ3: (i, j, ℓ) ∈ ℕ3} is different from zero, then (xminjkℓ
) 

is called a non thin subsequence of a triple sequence 
x. 

c ∈ ℝ is called a statistical cluster point of a triple 
sequence x = (xmnk) provided that the natural 
density of the set, 

 
{(m, n, k) ∈ ℕ3: |xmnk − c| < ε} 
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is different from zero for every ε > 0. We denote the 
set of all statistical cluster points of the sequence x 
by Γx. 

Let f be a continuous function defined on the 
closed interval [0,1]. A triple sequence of Bernstein 

polynomials (Brst(f, x)) is said to be statistically 

analytic if there exists a positive number M such that, 
 

δ({(m, n, k) ∈ ℕ3: |Bmnk(f, x) − f(x)|1/m+n+k ≥ M}) = 0 

 
that is, 
 

limrst→∞

1

rst
|{(m, n, k) ≤ (r, s, t): |Bmnk(f, x) − f(x)|1/m+n+k

≥ M}| = 0. 

 
The theory of statistical convergence has been 

discussed in trigonometric series, summability 
theory, measure theory, turnpike theory, 
approximation theory, fuzzy set theory and so on. 

The idea of rough convergence was introduced by 
Phu (2001), who also introduced the concepts of 
rough limit points and roughness degree. The idea of 
rough convergence occurs very naturally in 
numerical analysis and has interesting applications. 
Aytar (2008) extended the idea of rough 
convergence into rough statistical convergence using 
the notion of natural density just as usual 
convergence was extended to statistical 
convergence. Pal et al. (2013) extended the notion of 
rough convergence using the concept of ideals which 
automatically extends the earlier notions of rough 
convergence and rough statistical convergence. 

In this paper, we introduce the notion of 
Bernstein operator of rough statistical convergence 
of triple sequences. Defining the set of Bernstein 
polynomials of rough statistical limit points of a 
triple sequence, we obtain to Bernstein operator of 
statistical convergence criteria associated with this 
set. Later, we prove that this set of Bernstein 
operator of statistical cluster points and the set of 
rough statistical limit points of a triple sequence. 

A triple sequence (real or complex) can be 
defined as a function x: ℕ × ℕ × ℕ → ℝ(ℂ), where 
ℕ, ℝ and ℂ denote the set of natural numbers, real 
numbers and complex numbers respectively. The 
different types of notions of triple sequence was 
introduced and investigated at the initial by Sahiner 
et al. (2007), Sahiner and Tripathy (2008), Esi 
(2014), Esi and Catalbas (2014), Esi and Savas 
(2015), Esi et al. (2016), Dutta et al. (2013), 
Subramanian and Esi (2015), Debnath et al. (2015), 
Tripathy and Goswami (2014, 2015a, b, c) and many 
others. 

Throughout the paper let r is a nonnegative real 
number. 

2. Definitions and preliminaries 

Definition 2.1: Let f be a continuous function 
defined on the closed interval [0,1]. A triple 

sequence of Bernstein polynomials (Bmnk(f, x)) is 

said to be r − convergent to f(x) denoted by 
Bmnk(f, x) →r f(x), provided that, 
 
∀ε > 0    ∃(mε, nε, kε) ∈ ℕ3: m ≥ mε, n ≥ nε, k ≥ kε

⇒ |Bmnk(f, x) − f(x)| < r + ε. 
 
The set 
 

LIMrBmnk(f, x) = {L ∈ ℝ3: Bmnk(f, x) →r f(x)} 

 
is called the r − limit set of Bernstein operator of the 
triple sequences.  
Definition 2.2: Let f be a continuous function 
defined on the closed interval [0,1]. A triple 
sequence x = (xmnk) of Bernstein polynomials 

(Bmnk(f, x)) is said to be r − convergent if 

LIMrBmnk(f, x) ≠ ϕ. In this case, r is called the 
Bernstein operator of convergence degree of the 
triple sequence . For r = 0, we get the ordinary 
convergence.  
Definition 2.3: Let f be a continuous function 
defined on the closed interval [0,1]. A triple 

sequence of Bernstein polynomials (Bmnk(f, x)) is 

said to be r − statistically convergent to f(x), 
denoted by Bmnk(f, x) →rst f(x), provided that the set 
 
{(m, n, k) ∈ ℕ3: |Bmnk(f, x) − f(x)| ≥ r + ε} 

 
has natural density zero for every ε > 0, or 
equivalently, if the condition, 
 
st − lim    sup    |Bmnk(f, x) − f(x)| ≤ r 

 
is satisfied. 

In addition, we can write Bmnk(f, x) →rst f(x) if 
and only if the inequality, 

 
|Bmnk(f, x) − f(x)| < r + ε 

 
holds for every ε > 0 and almost all (m, n, k). Here r 
is called the Bernstein operator of roughness of 
degree. If we take r = 0, then we obtain the ordinary 
statistical convergence of triple sequence. 

In a similar fashion to the idea of classic rough 
convergence, the idea of Bernstein operator of rough 
statistical convergence of a triple sequence spaces 
can be interpreted as follows: 

Assume that f be a continuous function defined 
on the closed interval [0,1]. A triple sequence of 

Bernstein polynomials (Bmnk(f, y)) is statistically 

convergent and cannot be measured or calculated 
exactly; one has to do with an approximated (or 
statistically approximated) triple sequence of 

Bernstein polynomials (Bmnk(f, x)) satisfying 
|Bmnk(f, x) − Bmnk(f, y)| ≤ r for all m, n, k (or for 
almost all (m, n, k), i.e., 

 
δ({(m, n, k) ∈ ℕ3: |Bmnk(f, x) − Bmnk(f, y)| > r}) = 0. 

 
Then the triple sequence of Bernstein 

polynomials (Bmnk(f, x)) is not statistically 

convergent any more, but as the inclusion,  
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{(m, n, k) ∈ ℕ3: |Bmnk(f, y) − f(x)| ≥ ε} ⊇ {(m, n, k) ∈

ℕ3: |Bmnk(f, x) − f(x)| ≥ r + ε}                             (2.1) 
 
holds and we have: 
 
δ({(m, n, k) ∈ ℕ3: |Bmnk(f, y) − f(x)| ≥ ε}) = 0, 
 
i.e., we get, 
 
δ({(m, n, k) ∈ ℕ3: |Bmnk(f, x) − f(x)| ≥ r + ε}) = 0, 
 
i.e., the triple sequence of Bernstein polynomials 

(Bmnk(f, x)) is r − statistically convergent in the 

sense of definition 2.3. 
In general, the rough statistical limit of a triple 

sequence of Bernstein polynomials (Bmnk(f, x)) may 

not unique for the roughness degree r > 0. So we 
have to consider the so called r − statistical limit set 
of a triple sequence of Bernstein polynomials 
(Bmnk(f, x)), which is defined by: 

 
st − LIMr(Bmnk(f, x)) = {L ∈ ℝ: Bmnk(f, x) →rst f(x)}. 

 
The triple sequence of Bernstein polynomials 

(Bmnk(f, x)) is said to be r − statistically convergent 

provided that st − LIMr(Bmnk(f, x)) ≠ ϕ. It is clear 

that if st − LIMr(Bmnk(f, x)) ≠ ϕ. for a triple 

sequence of Bernstein polynomials (Bmnk(f, x)) of 

real numbers, then we have:  
 

st − LIMr(Bmnk(f, x)) = [st − lim    sup    (Bmnk(f, x)) −

r, st − lim    inf    (Bmnk(f, x)) + r]                             (2.2) 
 
We know that LIMr = ϕ for an unbounded triple 

sequence of Bernstein polynomials (Bmnk(f, x)). But 

such a triple sequence of Bernstein polynomials 
might be rough statistically convergent. For instance, 
define: 

 
(Bmnk(f, x))

= {
(−1)mnk,  if (m, n, k) ≠ (i, j, ℓ)2(i, j, ℓ ∈ ℕ),
(mnk),  otherwise 

}. 

 
in ℝ. Because the set {1,64,739, ⋯ } has natural 
density zero, we have 
 

st − LIMr(Bmnk(f, x)) = {
ϕ,  if     r < 1,
[1 − r, r − 1],  otherwise 

} 

 
and 
 
LIMr(Bmnk(f, x)) = ϕ for all r ≥ 0. 

 
It can be seen from the above example fact that 

the fact st − LIMr(Bmnk(f, x)) ≠ ϕ does not imply 

LIMr(Bmnk(f, x)) ≠ ϕ. Because a finite set of natural 

numbers has natural density zero, 

LIMr(Bmnk(f, x)) ≠ ϕ implies st −

LIMr(Bmnk(f, x)) ≠ ϕ. Therefore, we get 

LIMr(Bmnk(f, x)) ⊆ st − LIMr(Bmnk(f, x)). This 

obvious fact means {r ≥ 0: LIMr(Bmnk(f, x)) ≠ ϕ} ⊆

{r ≥ 0: st − LIMr(Bmnk(f, x)) ≠ ϕ} in this language of 

sets and yields immediately 
 

inf{r ≥ 0: LIMr(Bmnk(f, x)) ≠ ϕ}

≥ inf{r ≥ 0: st − LIMr(Bmnk(f, x)) ≠ ϕ}. 

 
Moreover, it also yields directly: 
 

diam (LIMr(Bmnk(f, x))) ≤ diam (st − LIMr(Bmnk(f, x))). 

3. Main results 

Theorem 3.1: Let f be a continuous function defined 
on the closed interval [0,1]. A triple sequence of 

Bernstein polynomials (Bmnk(f, x)), we have 

diam (st − LIMr(Bmnk(f, x))) ≤ 2r. In general 

diam (st − LIMr(Bmnk(f, x))) has an upper bound.  

Proof: Assume that diam (st − LIMr(Bmnk(f, x))) >

2r. Then there exist w, y ∈ st − LIMr(Brst(f, x)) such 

that |(Bmnk(f, w)) − (Bmnk(f, y))| > 2r. Take ε ∈

(0,
|(Bmnk(f,w))−(Bmnk(f,y))|

2
− r). Because w, y ∈ st −

LIMr(Bmnk(f, x)), we have δ(K1) = 0 and δ(K2) = 0 

for every ε > 0 where K1 = {(m, n, k) ∈
ℕ3: |Bmnk(f, x) − w| ≥ r + ε} and K2 = {(m, n, k) ∈
ℕ3: |Bmnk(f, x) − y| ≥ r + ε}. 

Using the properties of natural density, we get 
δ(K1

c ⋂ K2
c ) = 1. Thus we can write: 

 
|w − y| ≤ |Bmnk(f, x) − w| + |Bmnk(f, x) − y| 

< 2(r + ε) = 2 (
|w − y|

2
) = |w − y| 

 
for all (m, n, k) ∈ K1

c ⋂ K2
c , which is a contradiction. 

Now we prove the second part of the theorem. 
Consider a triple sequence of Bernstein polynomials 

(Bmnk(f, x)) such that st − lim    Bmnk(f, x) = f(x). Let 

ε > 0. Then we can write δ({(m, n, k) ∈
ℕ3: |Bmnk(f, x) − f(x)| ≥ ε}) = 0. We have: 

 
|Bmnk(f, x) − y| ≤ |Bmnk(f, x) − f(x)| + |f(x) − y|

≤ |Bmnk(f, x) − f(x)| + r 
 

for each y ∈ B̅r(f(x)) = {y ∈ ℝ3: |y − f(x)| ≤ r}. 

Then we get |f(x) − y| < r + ε for each (m, n, k) ∈
{(m, n, k) ∈ ℕ3: |Bmnk(f, x) − f(x)| < ε}. Because the 
triple sequence space of Bernstein polynomials 
(Brst(f, x)) is statistically convergent to f(x), we have 

 
δ({(m, n, k) ∈ ℕ3: |Bmnk(f, x) − f(x)| < ε}) = 1. 

 

Therefore we get y ∈ st − LIMr(Brst(f, x)). Hence, 

we can write 
 

st − LIMr(Brst(f, x)) = B̅r(f(x)). 

 

Because diam (B̅r(f(x))) = 2r, this shows that in 

general, the upper bound 2r of the diameter of the 

set st − LIMr(Brst(f, x)) is not a lower bound.  
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Theorem 3.2: Let f be a continuous function defined 
on the closed interval [0,1]. A triple sequence of 

Bernstein polynomials (Bmnk(f, x)) is r − statistically 

convergent to f(x) if and only if there exists a triple 

sequence of Bernstein polynomials (Brst(f, x)) such 

that st − lim    (Bmnk(f, y)) = f(x) and |Bmnk(f, x) −

Bmnk(f, y)| ≤ r for each (m, n, k) ∈ ℕ3.  
Proof. Necessity: Assume that Bmnk(f, x) →rst f(x). 
Then we have  
 
st − lim    sup    |Bmnk(f, x) − f(x)| ≤ r.            (3.1) 

 
Now, define 
 

Bmnk(f, y) = (
f(x),    if    |Bmnk(f, x) − f(x)| ≤ r,

Bmnk(f, x) + r (
f(x)−Bmnk(f,x)

|Bmnk(f,x)−f(x)|
) ,    otherwise,

  

 
then, we write 
 
|Bmnk(f, y) − f(x)| =

(
|f(x) − f(x)|,    if    |Bmnk(f, x) − f(x)| ≤ r,

|Bmnk(f, x) − f(x)| + r (
|f(x)−f(x)|−|Bmnk(f,x)−f(x)|

|Bmnk(f,x)−f(x)|
) ,    otherwise,

  

 (i. e)|Bmnk(f, y) − f(x)| =

(
0,    if    |Bmnk(f, x) − f(x)| ≤ r,

|Bmnk(f, x) − f(x)| − r (
|Bmnk(f,x)−f(x)|

|Bmnk(f,x)−f(x)|
) ,    otherwise,

  

 (i. e)|Bmnk(f, y) − f(x)|

= (
0,    if    |Bmnk(f, x) − f(x)| ≤ r,
|Bmnk(f, x) − f(x)| − r,    otherwise.

 

 
We have  
 

|Bmnk(f, y) − f(x)| ≥ |Bmnk(f, x) − f(x)| − r 
⇒ |Bmnk(f, x) − f(x) − Bmnk(f, y) + f(x)| ≤ r 

⇒ |Bmnk(f, x) − Bmnk(f, y)| ≤ r                             (3.2) 
 
for all m, n, k ∈ ℕ3. By equation (3.1) and by 
definition of ymnk, we get  
 
st − limsup|Bmnk(f, y) − f(x)| = 0 
⇒ st − lim    Bmnk(f, y) →r f(x). 

 
Sufficiency: Since st − lim    Bmnk(f, y) = f(x), we 
have 
 

δ({(m, n, k) ∈ ℕ3: |Bmnk(f, y) − f(x)| ≥ ε}) = 0 
 
for each ε > 0. It is easy to see that the inclusion 
 
{(m, n, k) ∈ ℕ3: |Bmnk(f, y) − f(x)| ≥ ε}

⊇ {(m, n, k) ∈ ℕ3: |Bmnk(f, x) − f(x)|
≥ r + ε} 

 
holds.  

 
Since 
 

δ({(m, n, k) ∈ ℕ3: |ymnk − f(x)| ≥ ε}) = 0,  
 
we get 
 

δ({(m, n, k) ∈ ℕ3: |Bmnk(f, x) − f(x)| ≥ r + ε}) = 0. 

 

Remark 3.3: If we replace the condition 
|Bmnk(f, x) − Bmnk(f, y)| ≤ r for all m, n, k ∈ ℕ3 in the 
hypothesis of the theorem 3.2 with the condition 
 
δ({(m, n, k) ∈ ℕ3: |Bmnk(f, x) − Bmnk(f, y)| > r}) = 0 

 
is valid.  
Theorem 3.4: Let f be a continuous function defined 
on the closed interval [0,1]. A triple sequence of 

Bernstein polynomials (Bmnk(f, x)) is an arbitrary 

c ∈ Γx of triple sequence of Bernstein polynomials 

(Bmnk(f, x)) we have |f(x) − c| ≤ r for all f(x) ∈ st −

LIMr(Bmnk(f, x)).  

Proof: Assume on the contrary that there exist a 

point c ∈ Γx and f(x) ∈ st − LIMr(Bmnk(f, x)) such 

that |f(x) − c| > r. Define ε: =
|l−c|−r

3
. Then  

 
{(m, n, k) ∈ ℕ3: |f(x) − c| < ε} ⊆ {(m, n, k) ∈

ℕ3: |(Bmnk(f, x)) − f(x)| ≥ r + ε}.                             (3.3) 

 
Since c ∈ Γx, we have 
 

δ({(m, n, k) ∈ ℕ3: |(Bmnk(f, x)) − c| < ε}) ≠ 0. 
 
Hence, by (3.3), we get 
 

δ({(m, n, k) ∈ ℕ3: |(Bmnk(f, x)) − f(x)| ≥ r + ε}) ≠ 0, 

 

which contradicts the fact l ∈ st − LIMr(Bmnk(f, x)).  

Proposition 3.5: Let f be a continuous function 
defined on the closed interval [0,1]. A triple 

sequence of Bernstein polynomials (Bmnk(f, x)) is 

analytic, then there exists a non-negative real 
number r such that st − LIMr(Bmnk(f, x)) ≠ ϕ.  

Proof: If we take the triple sequence of Bernstein 

polynomials (Bmnk(f, x)) is to be statistically 

analytic, then the of proposition holds. Thus we have 
the following theorem.  
Theorem 3.6: Let f be a continuous function defined 
on the closed interval [0,1]. A triple sequence of 

Bernstein polynomials (Bmnk(f, x)) is statistically 

analytic if and only if there exists a non-negative real 
number r such that st − LIMr(Bmnk(f, x)) ≠ ϕ.  

Proof: Since the triple sequence of Bernstein 

polynomials (Bmnk(f, x)) is statistically analytic, 

there exists a positive real number M such that 
 

δ ({(m, n, k) ∈ ℕ3: |(Bmnk(f, x))|
1/m+n+k

≥ M}) = 0. 

 
Define 
 

r ′ = sup {|(Bmnk(f, x))|
1/m+n+k

: (m, n, k) ∈ Kc}, 

 
where 
 

K = {(m, n, k) ∈ ℕ3: |(Bmnk(f, x))|
1/m+n+k

≥ M}. 
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Then the set st − LIMr ′

(Bmnk(f, x)) contains the 

origin of ℝ. So we have st − LIMr(Bmnk(f, x)) ≠ ϕ. 

If st − LIMr(Bmnk(f, x)) ≠ ϕ for some r ≥ 0, then 

there exists f(x) such that f(x) ∈ st −

LIMr(Bmnk(f, x)), i.e., 

 

δ ({(m, n, k) ∈ ℕ3: |(Bmnk(f, x)) − f(x)|
1/m+n+k

≥ r + ε})

= 0 

 
for each ε > 0.  

Then we say that almost all triple sequence are 
contained in some ball with any radius greater than 
r. So the triple sequence space of Bernstein 

polynomials (Bmnk(f, x)) is statistically analytic.  

Remark 3.7: If x ′ = (xmi,nj,kℓ
) is a sub sequence of 

x = (xmnk), then LIMr(Bmnk(f, x)) ⊆

LIMr(Bmnk(f, x))
 ′

. But it is not valid for statistical 

convergence.  
Example 3.8: Define 
 
(Bmnk(f, x))

= {
(mnk),  if     (m, n, k) = (i, j, ℓ)2(i, j, ℓ ∈ ℕ),
0,  otherwise 

} 

 
of real numbers. Then the triple sequence spaces 

(Bmnk(f, x))
 ′

= (1,64,739, ⋯ ) is a subsequence of 

(Bmnk(f, x)). We have st − LIMr(Bmnk(f, x)) = [−r, r] 

abd st − LIMr(Bmnk(f, x))
 ′

= ϕ.  

Theorem 3.9: Let x  ′ = (xmi,nj,kℓ
) is a non thin sub 

sequence of triple sequence space of Bernstein 

polynomials (Bmnk(f, x)), then st −

LIMr, (Bmnk(f, x)) ⊆ st − LIMr(Bmnk(f, x))
 ′

.  

Proof: Omitted.  
Theorem 3.10: Let f be a continuous function 
defined on the closed interval [0,1]. A triple 

sequence of Bernstein polynomials (Bmnk(f, x)) of 

r − statistical limit set is closed.  

Proof: If st − LIMr(Bmnk(f, x)) ≠ ϕ, then it is true. 

Assume that st − LIMr(Bmnk(f, x)) ≠ ϕ, then we can 

choose a triple sequence space of Bernstein 

polynomials (Bmnk(f, y)) ⊆ st − LIMr(Bmnk(f, x)) 

such that (Bmnk(f, y)) →r f(x) as m, n, k → ∞. If we 

prove that f(x) ∈ st − LIMr(Bmnk(f, x)), then the 

proof will be complete. 
Let ε > 0 be given. Since 

(Bmnk(f, y)) →r f(x), ∃ (mε

2
, nε

2
, kε

2
) ∈ ℕ3 such that 

 

|(Bmnk(f, y)) − f(x)| <
ε

2
for all m > mε

2
, n > nε

2
, k > kε

2
. 

 
Now choose an (m0, n0k0) ∈ ℕ3 such that m0 >

mε

2
, n0 > nε

2
, k0 > kε

2
. Then we can write 

 

|Bm0n0k0
(f, y) − f(x)| <

ε

2
. 

On the other hand, since (Bmnk(f, y)) ⊆ st −

LIMr(Bmnk(f, x)), we have ym0n0k0
∈ st −

LIMr(Bmnk(f, x)), namely,  

 
δ ({(m, n, k) ∈ ℕ3: |(Bmnk(f, x)) − ym0n0k0

| ≥ r +
ε

2
}) = 0.      (3.4) 

 
Now let us show that the inclusion  
 

{(m, n, k) ∈ ℕ3: |(Bmnk(f, x)) − f(x)| < r + ε} ⊇

{(m, n, k) ∈ ℕ3: |(Bmnk(f, x)) − ym0n0k0
| < r +

ε

2
}         (3.5) 

 
holds.  

Take (i, j, ℓ) ∈ {(m, n, k) ∈ ℕ3: |(Bmnk(f, x)) −

ym0n0k0
| < r +

ε

2
}. Then we have 

 

|(Bmnk(f, x)) − ym0n0k0
| < r +

ε

2
 

 
and hence 
 
|Bijℓ(f, x) − f(x)| ≤ |Bijℓ(f, x) − ym0n0k0

| + |ym0n0k0
− f(x)|

< r +
ε

2
+

ε

2
< r + ε 

 

i.e., (i, j, ℓ) ∈ {(m, n, k) ∈ ℕ3: |(Bmnk(f, x)) − f(x)| <

r + ε} which proves the equation (3.5). Hence the 

natural density of the set on the LHS of equation 

(3.5) is equal to 1. So we get δ({(m, n, k) ∈

ℕ3: |(Bmnk(f, x)) − f(x)| ≥ r + ε}) = 0.  

Theorem 3.11: Let f be a continuous function 
defined on the closed interval [0,1]. A triple 

sequence of Bernstein polynomials (Bmnk(f, x)) of 

r − statistical limit set is convex.  

Proof: Let y1, y2 ∈ st − LIMr(Bmnk(f, x)) for the 

triple sequence of Bernstein polynomials 
(Bmnk(f, x)) and let ε > 0 be given. Define K1 =

{(m, n, k) ∈ ℕ3: |(Bmnk(f, x)) − y1| ≥ r + ε} and K2 =

{(m, n, k) ∈ ℕ3: |(Bmnk(f, x)) − y2| ≥ r + ε}. Because 

y1, y2 ∈ st − LIMr(Bmnk(f, x)), we have δ(K1) =

δ(K2) = 0. Thus we have 
 
|(Bmnk(f, x)) − [(1 − λ)y1 + λy2]|

= |(1 − λ) ((Bmnk(f, x)) − y1)

+ λ ((Bmnk(f, x)) − y2)| < r + ε, 

 
for each (m, n, k) ∈ (K1

c ⋂ K2
c ) and each λ ∈ [0,1]. 

Because δ(K1
c ⋂ K2

c ) = 1, we get 
 
δ({(m, n, k) ∈ ℕ3: |(Bmnk(f, x)) − [(1 − λ)y1 + λy2]|

≥ r + ε}) = 0, 

 

i.e., [(1 − λ)y1 + λy2] ∈ st − LIMr(Bmnk(f, x)), which 

proves the convexity of the set st − LIMr(Bmnk(f, x)).  

Theorem 3.12: Let f be a continuous function 
defined on the closed interval [0,1]. A triple 

sequence of Bernstein polynomials (Bmnk(f, x)) of 

statistically converges to f(x) if and only if st −

LIMr(Bmnk(f, x)) = B̅r(f(x)).  
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Proof: We have proved the necessity part of this 
theorem in proof of the theorem 3.1. 

Sufficiency: Because st − LIMr(Bmnk(f, x)) =

B̅r(f(x)) ≠ ϕ, then by Proposition (3.1) we can say 

that the triple sequence space of Bernstein 

polynomials (Bmnk(f, x)) is statistically analytic. 

Assume on the contrary that the triple sequence 

space of Bernstein polynomials (Bmnk(f, x)) has 

another statistical cluster point f  ′(x) different from 
f(x). Then the point 
 

f(̅x) = f(x) +
r

|f(x) − f  ′(x)|
(f(x) − f  ′(x)) 

 
satisfies 
 

f(̅x) − f  ′(x) = f(x) − f  ′(x) +
r

|f(x) − f  ′(x)|
(f(x) − f  ′(x)) 

|f(̅x) − f  ′(x)| = |f(x) − f  ′(x)|

+
r

|f(x) − f  ′(x)|
(f(x) − f  ′(x)) 

|f(̅x) − f  ′(x)| = |f(x) − f  ′(x)| + r > r. 
 

Since f  ′(x) is a statistical cluster point of the 
triple sequence space of Bernstein polynomials 

(Bmnk(f, x)), by theorem 3.4 this inequality implies 

that f(̅x) ∉ st − LIMr(Bmnk(f, x)). This contradicts 

the fact |f(̅x) − f(x)| = r and st − LIMr(Bmnk(f, x)) =

B̅r(f(x)). Therefore, f(x) is the unique statistical 

cluster point of the triple sequence space of 

Bernstein polynomials (Bmnk(f, x)). Hence the 

statistical cluster point of a statistically analytic 
triple sequence space of Bernstein polynomials is 
unique, then the triple sequence space of Bernstein 

polynomials (Bmnk(f, x)) is statistically convergent 

to f(x).  
Theorem 3.13: Let f be a continuous function 
defined on the closed interval [0,1]. A triple 

sequence of Bernstein polynomials (Bmnk(f, x)) and 

(ℝ3, |. , . |) be a strictly convex space, there exist 

y1, y2 ∈ st − LIMr(Bmnk(f, x)) such that |y1 − y2| =

2r then this triple sequence of Bernstein polynomials 

(Bmnk(f, x)) is statistically convergent to 
1

2
(y1 + y2).  

Proof: Assume that z ∈ Γx. Then y1, y2 ∈ st −

LIMr(Bmnk(f, x)) implies that  

 
|y1 − z| ≤ r    and    |y2 − z| ≤ r,                        (3.6) 
 
by theorem 3.4. On the other hand, we have  
 
2r = |y1 − y2| ≤ |y1 − z| + |y2 − z|                       (3.7) 
 
combining the inequalities (3.6) and (3.7), we get 
|y1 − z| = |y2 − z| = r. Since 
  
1

2
(y2 − y1) =

1

2
[(z − y1) + (−z + y2)]                        (3.8) 

 

and |y1 − y2| = 2r, we get |
1

2
(y2 − y1)| = r. By the 

strict convexity of the space and from the equality 

(3.8), we get 
1

2
(y2 − y1) = (z − y1) = (−z + y2) 

which implies that z =
1

2
(y1 + y2). Hence z is the 

unique statistical cluster point of the triple sequence 

space of Bernstein polynomials (Bmnk(f, x)). 

On the other hand, the assumption y1, y2 ∈ st −

LIMrx implies that st − LIMr(Bmnk(f, x)) ≠ 0. By 

theorem 3.6, the triple sequence of Bernstein 

polynomials (Bmnk(f, x)) is statistically analytic. 

Consequently, the statistical cluster point of a 
statistically analytic triple sequence space of 

Bernstein polynomials (Bmnk(f, x)) is unique, then 

the triple sequence space of Bernstein polynomials 

(Bmnk(f, x)) is statistically convergent, i.e., 

 

 st − lim    (Bmnk(f, x)) =
1

2
(y1 + y2).  

 
Theorem 3.14: Let f be a continuous function 
defined on the closed interval [0,1]. A triple 

sequence of Bernstein polynomials (Bmnk(f, x)).  

 
(a) If c ∈ Γx then  
 
st − LIMr(Bmnk(f, x)) ⊆ B̅r(c)                             (3.9) 
 
(b)st − LIMr(Bmnk(f, x)) = ⋂c∈Γx

B̅r(c) = {f(x) ∈ ℝ3: Γx ⊆

B̅r(f(x))}                                       (3.10) 
 
Proof:  

(a) Assume that l ∈ st − LIMr(Bmnk(f, x)) and c ∈ Γx. 

Then by theorem 3.4, we have 
 
|f(x) − c| ≤ r; 
 
otherwise we get 
 

δ({(m, n, k) ∈ ℕ3: |(Bmnk(f, x)) − f(x)| ≥ r + ε}) ≠ 0 

for ε =
|f(x)−c|−r

3
.  

 
This contradicts the fact f(x) ∈ st −

LIMr(Bmnk(f, x)). 

 
(b) By the equation (3.9), we can write  
 
st − LIMr(Bmnk(f, x)) ⊆ ⋂c∈Γx

B̅r(c).                          (3.11) 

 
Now assume that y ∈ ⋂c∈Γx

B̅r(c). Then we have 

 
|y − c| ≤ r 

 
for all c ∈ Γx, which is equivalent to Γx ⊆ B̅r(y), i.e., 
  
⋂c∈Γx

B̅r(c) ⊆ {f(x) ∈ ℝ3: Γx ⊆ B̅r(f(x))}.                    (3.12) 

 

Now let y ∉ st − LIMr(Bmnk(f, x)). Then there 

exists an ε > 0 such that 
 

δ({(m, n, k) ∈ ℕ3: |f(x) − (Bmnk(f, y))| ≥ r + ε}) ≠ 0 
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the existence of a statistical cluster point c of the 
triple sequence space of Bernstein polynomials 

(Bmnk(f, x)) with |(Bmnk(f, y)) − c| ≥ r + ε, 

i.e.,

ΓxÚB̅r(y) and y ∉ {f(x) ∈ ℝ3: Γx ⊆ B̅r(f(x))}. 

Hence y ∈ st − LIMr(Bmnk(f, x)) follows from y ∈

{f(x) ∈ ℝ3: Γx ⊆ B̅r(f(x))}, i.e.,

{f(x) ∈ ℝ3: Γx ⊆ B̅r(f(x))} ⊆ st − LIMr(Bmnk(f, x)).   (3.13) 

Therefore the inclusions (3.11)-(3.13) ensure 
that (3.10) holds. 

4. Conclusion

In recent years the statistical convergence has 
been adapted to the sequences of fuzzy numbers, 
interval numbers etc. In this paper we have studied 
the notion of Bernstein operator of rough statistical 
convergence of triple sequence. We define the set of 
Bernstein operator of rough statistical limit points of 
a triple sequence spaces and obtain Bernstein 
operator of statistical convergence criteria 
associated with this set. We proved some theorems 
of the introduced sequence spaces. This notion can 
be used for further generalization of such sequence 
spaces. 
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